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A Variational Approach to Crystalline Triple-Junction
Motion
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A variational description is given for curves with triple junctions for the motion
with normal velocity v=M(C+}8), where }8 stands for the crystalline cur-
vature as determined by the curves and by the crystalline (polygonal Wulff
shape) surface free energy functions 8 for each interface, C is constant on each
interface, and M is a compatible normal-dependent mobility function for each
interface. This variational formulation is based on the idea that the motion
should be gradient flow, in the L2 inner product, for the sum of the surface free
energy and the bulk free energy. If the surface free energy functions 8 are identi-
cally zero, the motion is that given by Taylor (1995). If the surface free energy
functions are positive and crystalline, then the motion is that given by Taylor
(1993). Finally, if the surface free energy functions are written as 8==80 , then
the limiting motion as = a 0 is in general different from the motion for ==0 [and
hence different from that given by Taylor (1993); the limiting motion is
presumably that given by Reitich and Mete Soner (1996)].

KEY WORDS: Motion by weighted mean curvature; geometric crystal
growth; triple-junction motion; L2 gradient flow; crystalline surface energy;
mobility; grain growth; polycrystalline evolution; variational.

1. INTRODUCTION

This paper provides a variational formulation for geometric crystal growth
of polycrystals. It primarily considers polyhedral curves in R2 meeting at
triple junctions; these curves form the boundaries of regions (which are not
necessarily connected or simply connected). To be precise and more
general, a polycrystal configuration consists of a finite number N of closed
regions [K:]:=1,..., N with rectifiable boundaries having finite surface area,
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such that each region is the closure of an open set, their union is all of Rd,
and each pair of regions intersects only along the portion of their boun-
daries that they have in common (the interface between those regions). The
words ``volume'' and ``surface area'' will continue to be used when d=2,
although speaking of area in the 2-dimensional plane and length of curves
respectively.

Let S:; denote the interface between K: and K; , oriented as part of
the boundary of K: (positively oriented). Thus S;: is S:; with the opposite
orientation. Also S:; might well be empty for a given pair :, ;. If x is in
S:; , let n:;(x) be the oriented normal to S:; at x; it thus points from
region : into region ;.

We will consider a class of motions driven by surface free energy
changes and�or bulk free energy changes. For each :, let B: be the bulk free
energy per unit volume of the phase of K: . We assume for convenience
(and without loss of generality) that the regions are indexed so that
B:�B; if :<;. The surface free energy per unit area for an interface S:;

is a function 8:; from Rd to R which is either positive on unit vectors n
and satisfies 8:;(rn)=r8:;(n) for all n and all r�0, or else is zero on all
vectors in Rd. For geometric crystal growth, as reviewed in [TCH], the
normal velocity v(x) at a point x in S:; is given by

v(x)=M:;(n:;(x))(C:;+}8:;
(S:; , x))

Here M:; is a mobility function (assumed to be positive), C:;=B;&B: ,
and }8:;

(S:; , x) is the weighted mean curvature of S:; at x. For further
assumptions made on the 8 and M and the definition of }8:;

(S:; , x) and
other terms, see Section 2 below. For a discussion of how surface free
energies arise thermodynamically, see [TC].

Motion by crystalline curvature of polygonal curves separating two
regions was defined, analyzed and programmed in [T1], and was
independently defined and analyzed in [AG]. In [T1] a statement was
also given of a variational approach to determine geometric crystal growth
for crystalline curves with triple junctions and boundary points; this
variational approach involved only ``surface'' integrals, and it was given in
principle rather than worked out explicitly. Computer programs to imple-
ment the principle, as illustrated for example in the video part of [T3],
looked for, the minimizers using random insertion of extra segments and
computational minimization. Section 3 of this paper makes this formulation
explicit, identifying the precise class of situations where it can be applied
and solving for the exact minimizing position motion of the triple junction
at each time step.

In [ATW], a general means of finding motion by weighted mean
curvature of surfaces separating two regions was given which involved
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constructing approximating flows at discrete times and then proving that
the approximating flows had a convergent subsequence as the time step
decreased toward zero. Given an initial crystal position K=K(0) (precisely,
the d-dimensional positively-oriented integral current of multiplicity 1 every-
where that is determined by K ) and a time step 2t, for each nonnegative
integer n the new approximating crystal position at time (n+1) 2t, was
found from Kn=K(n 2t) by setting K((n+1) 2t) equal to the minimizer,
over all possible new crystal positions K, of an ``energy''

EATW (K, Kn , 2t)=|
x # �K

8(n�K (x)) dHd&1x

+
1

2t |
x # KtKn _ KntK

dist(x, �Kn) dLdx

In [AT] it was shown that the crystalline motion of [T1] was the same
as the motion obtained by the volume-integral variational framework of
[ATW]. Roosen [R] proposed, and Yip [Y] proved, that one could
extend this formulation to the case where the mobility M depends on the
normal direction of the interface by replacing the last term by

1
2t |

x # KtKn _ KntK
inf

y # �Kn

M*(x&y) dLdx

Here M* is the dual norm to M, defined by M*(p)=supq{0 (p } q�M(q)).
When the interface �Kn is planar, with normal n, then infy # �Kn

M*(x&y)
is just dist(x, �Kn)�M(n).

It is conjectured here that the appropriate analog to [ATW] for the
polycrystalline case is the following: Given 2t>0, an ``old'' polycrystal con-
figuration [L:] with interfaces [T:;], and a ``new'' polycrystal configuration
[K:] with interfaces [S:;], define

E([K:], [L:], 2t)=Sv+Bv+Iv

where Sv is the surface free energy change:

Sv= :
1�:<;�N \|x # S:;

8:;(nS:;
(x)) dAx&|

x # T:;

8:;(nT:;
(x)) dAx+

Bv is the bulk free energy change:

Bv=:
:

B:(volume(K:tl:)&volume(L:tK:))
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and Iv is the ``penalty'' term corresponding to the integral of M*:

Iv=
1

2t
:

:<;
|

x # R:;

inf
y # T:;

M*:;(x&y) dV

where [R:;] is a set of regions such that there exits a collection of (d&1)-
dimensional rectifiable sets Qi and a set of numbers [$i, :;], each from the
set [1, &1, 0], with the boundary of R:; equal to S:;&T:;+� i $ i, :; Qi

and with each i having $i, :; nonzero for precisely three pairs :;, ;#, #: with
:<;<#. A more general condition would have to be devised in case force-
balanced quadrijunctions needed to be considered. The crystalline version
presented in this paper, the Ec of Section 4, uses essentially this approach,
but assumes that all the Qi are straight line segments, $i, :; is nonzero only
for two values of i for each connected component of S:; , and all the S:;

are of a particular polygonal form.
Note that any given point x might be in several different R:; , thereby

allowing for several changes of phase for a point during the time step 2t.
Caraballo [C] extended the [ATW] formulation and some of the analysis
to some polycrystalline cases, but he only considered the case where all
C:;=0 and he used a different version of Iv . His version of Iv did not
account for several changes of phase and does not extend correctly to
general geometric motions with bulk free energies, but it was adequate
since the exact form of the volume integral is relatively unimportant when
the C:; are all zero.

As in [ATW], motion over time 2t should be the minimizer of E over
all such K:; and R:; , using for [L:] the minimizer for the previous time
step (or, at time 0, the given initial data). In both [C] and [ATW], it is
important that ALL comparison surfaces be considered, but in the
crystalline case outlined here only a particular limited class of polygonal
comparisons is considered. It is conjectured, but not proven here, that min-
imizing Ec within this class is sufficient to give the same motion as would
be obtained by minimizing E over all polycrystal configurations. (For
motion by crystalline curves without triple junctions, this equivalence was
proved in [AT], as stated above.) Also, future efforts will have to deal with
the evolution through collisions of interfaces and triple junctions.

Because this volume-integral variational formulation is a direct conse-
quence of the idea that the motion should be gradient flow, in the L2 inner
product, for the sum of the surface free energy and the bulk free energy, the
motion it produces is a ``natural'' one. The motion that occurs when the
surface free energies are zero is in general different from the limiting motion
as those energies approach zero (i.e., using =8 as the surface free energy
and letting = go to zero). Furthermore, only these two varieties of motion
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of triple junctions occur; there is no family of motions interpolating
between them in this L2 formulation. However, the physically correct
motion is probably the limit motion rather than the zero-energy motion,
whenever it is physically possible for there to be a surface free energy, even
if that energy is usually neglected and thus by default set equal to zero.

The ``surface'' integral formulation yields Euler's method for solving
the system of ordinary differential equations which give the desired motion,
and the motion obtained by using finite time steps converges to the limit
motion as the time step goes to zero. The system of ordinary differential
equations has no particular stiffness until a segment with non-zero weighted
mean curvature goes to zero length. The volume integral formulation is
essentially an implicit method for solving the system, as the Euler-Lagrange
equations involve the weighted mean curvature of the moved interfaces
rather than the initial ones.

It is sometimes argued that triple junctions should have their own
mobility, and thus be able to have the surface energy at the junction not
be in force balance. Whether or not such mobilities exist, it is useful to see
what results follow from the simpler assumption that there are no such
separate mobilities.

There is a significant literature on motions of this type. See [TCH] for
a survey as of 1992. Many authors listed in that bibliography continue to
work on such problems. There have been particular advances in the diffuse
interface approach [NC].

2. DEFINITIONS

Throughout this section, we specialize to the crystalline case in R2. As
the purpose of this paper is to lay out the variational framework, in many
cases we make more restrictive assumptions than are absolutely necessary
on the 8:; and M:; .

Definition 2.1. A surface free energy function 8:; is either identi-
cally zero on all vectors in R2 or is positive on all unit vectors and satisfies
8(rn)=r8(n) for all r�0. We further assume that 8ab is convex (i.e.,
that 8(an1+bn2)�a8(n1)+b8(n2)). (Otherwise, we would have to use
varifolds��infinitesimal corrugations��with the same underlying sets.)
Except for the facet that we do not assume evenness, 8:; is thus a norm
on Rd. Each 8:; has a Wulff shape W8:;

=[x : x } n�8:;(n)]. We assume
that 8:; is crystalline, i.e., that W8:;

is a polygon in R2 (or just a point if
8:;#0). In order to avoid the necessity of considering infinitesimal layers,
we require 8:i :j

(n)+8:j :k
(n)�8:i :k

(n), for every triple of distinct indices
i, j, k and every unit vector n.
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Definition 2.2. A mobility function M:; is a function such that
M:;(rn)=rM:;(n) for all r�0 and M:; is positive on unit vectors. We
require that the mobility shape WM:;

=[x : x } n�M:;(n)] have the same
normal directions that W:; has (if 8:; is identically zero, we require that
WM:;

be a polygon). We further assume that M:; is convex. To avoid the
necessity of considering infinitesimal layers, we require that for every unit
vector n and :<;<#, if M;#(n) C;#<M:;(n) C:; , then M:#(n) C:#�
M;#(n) C;# . (Recall that we assumed the phases were indexed so that
B:�B; if :<;.)

Definition 2.3. Given a 8 with a polygonal Wulff shape W8 , an
oriented polygonal curve S is admissible for 8 if the set of normals to S is
contained in the set of normals to W8 and adjacent segments of S have
adjacent normals in W8 . All interfaces in Section 3 are required to be
admissible. S is defined to be almost admissible for 8 if S is polygonal and,
when a normal direction n of S is not a normal of W8 , then n and the nor-
mals of the adjacent segments in S must all be normals of supporting
planes at the same corner of W8 . An interface S:; in Section 4 has to be
almost admissible provided 8:; is not identically zero.

Definition 2.4. We will often denote a given segment of S by Si

(or Ti) and its normal by ni ; we then abbreviate 8:;(n i) by 8 i and M:;(ni)
by Mi . We use the notation ``i+'' to denote the immediately following
segment to Si (as determined by the orientation of S:;), and ``i&'' to
denote the immediately preceding segment (if any). Thus segment Si+

follows segment Si , and its normal direction is ni+ .

Definition 2.5. For an admissible curve S in the :; interface, if
the i+ (resp., i&) end of Si is not at a triple junction, then we define $i+

(resp., $i&) to be 1 if the final (resp., initial) end of the ith segment is
regular (locally bounds a convex positively-oriented region; the normals of
two adjacent segments in the curve are in the same order on the Wulff
shape as on the curve) and &1 if it is inverse (locally bounds a concave
positively-oriented region). We also define

fi\
=(8i\&8i ni } ni\)�- 1&(n i } n i\ )2

fM, i\=(Mi\&M i ni } ni\)�- 1&(ni } n i\)2

Definition 2.6. If neither end of Si is at a triple junction, then its
weighted mean curvature }8(S i) is defined to be the initial rate of decrease
of surface energy with ``volume'' (here 2-dimensional area) swept out under
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a deformation which consists of shifting the position of the whole segment,
added or removing bits of the segment and adjoining segments to maintain
a connected polygonal curve. One computes

}8(S i)=&($i+ f i+ +$i& f i& )�lSi

where lSi
is the length of edge S i . Since the length 4i of the facet with

normal ni of W8 is fi++ f i& , it is also true that

}8(S i)=_Si
4i �lSi

where _Si
=($i+ +$i&)�2. See [T4] for further information.

Definition 2.7. A vector ! is a !-vector for an oriented line seg-
ment T if ! is in the subgradient of 8:; at n(T ). Since we have assumed
8:; is convex, any such ! is a point on W8:;

for which n(T ) is a normal
(or, is a corner of W8:;

, if n(T ) is not a normal of a facet of W8:;
).

See [HC].

Definition 2.8. A configuration of three segments with a common
initial endpoint is force-balanced if there is a ! vector for each segment
such that the sum of those three ! vectors is zero. If the segments are not
oriented to have a common initial point, then the condition is that they be
force-balanced if the curves were given such an orientation (if n is changed
to &n, then obviously one also changes :; to ;:).

Definition 2.9. A polycrystal configuration is admissible for [8:;]
and [M:;] as above if each interface is required to be admissible for its 8:;

and Mab , and the admissible curves meet three at a time at force-balanced
triple junctions. It is almost admissible if the interfaces are merely almost
admissible.

3. SURFACE-INTEGRAL FORMULATIONS

3a. Heuristics

The ``energy'' EATW described in the Introduction was adopted in
[ATW] in order to handle singularities, including places where the normal
is undefined. Since �h

0 x dx=h2�2, a related formulation involving only
``surface'' integrals for an admissible crystalline curve with segments
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[Ti]i # I would be to minimize, just among other crystalline curves [Si] i # I

with nSi
=nTi

=ni for each i, the energy

:
i

8(nSi
(x)) lSi

&:
i

8(nTi
(x)) lTi

+
1

2 2t
:
i

dist2(Si , Ti) lTi

=:
i

_i 4i zi+
1

2 2t
:
i

z2
i lTi

where zi=ni } (y&x) for any x # Ti and y # Si . Minimization leads to
zi=&(_ i 4i �li) 2t.

Our objective is to extend these formulations, for crystalline curves, to
general geometric motion (v=M(C+}8)) with triple junctions. Suppose
[Ti]i # I are the segments of the interfaces of an admissible polycrystal
configuration. Abbreviate Mi=M:;(ni) and 8i=8:;(ni), where :; is the
interface of which Ti is a part. Suppose [Si] i # I$ also form admissible
curves that are interfaces of regions, with these curves meeting three at a
time at triple points, and nSi

=nTi
for each i # I, whereas each segment in

[Si] i # I$tI is short (of order 2t) and has one endpoint at a triple junction.

Definition.

Fc([Si] i # I$ , [Ti] i # I , 2t)

= :
i # I$

8(ni (x)) lSi
& :

i # I

8(ni (x)) lTi
+ :

i # I

&C i zi lTi
+

1
2 2t

:
i # I

z2
i

Mi
lTi

The ``surface-integral formulation'' of the variational problem is to minimize
(as stated in [T1]) the quantity Fc over all such [S i] and [Zi]. This
minimization gives

zi

2t
rMi (Ci+}8:;

(Si))

for each i # I such that Ti has no endpoint at a triple junction; it also
preserves the idea of L2 gradient flow where there are triple junctions.

The biggest question is: when do additional line segments [S i] i # I$tI

have to be added and what directions do they have? The basic answer, for
curves, as shown in [T1] is: only at triple junctions and then only if adding
them further decreases the total energy F. We show below that at most
one segment needs to be added at each triple junction if the [Ti] configuration
is almost admissible and initially force-balanced at each triple junction;
furthermore, the possible direction of any such added segment is completely
determined by the starting configuration [Ti].
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File: 822J 236209 . By:XX . Date:09:06:99 . Time:13:09 LOP8M. V8.B. Page 01:01
Codes: 2204 Signs: 1595 . Length: 44 pic 2 pts, 186 mm

3b. Octagonal Specific Example, with All C=0 and 8>0

Here is one specific example of how to determine exactly how to move
a triple junction, assuming both W8 and WM are the same regular octagon
for all interfaces (which are assumed to be admissible) and assuming all
bulk driving forces C are zero, so motion is just motion by weighed mean
curvature. All force-balanced triple junctions for this situation are shown in
Fig. 1.

Assume the triple junction has all initial points at the origin. Suppose the
three segments have normals (&1�- 2, &1�- 2), (0, 1), and (1, 0). See
Fig. 2. Denote the lengths of these segments by ls (for sloped), lh , (for
horizontal) and lv (for vertical) respectively. Finally, assume that the values
of $ at the terminal ends, $s+ , $h+ , $v+ , equal +1, +1, and &1 respec-
tively. (Because all three Wulff shapes are octagons and all curves are
admissible, the angle between normals at these final endpoints is each 45
degrees.)

Lemma 3.1. Under these assumptions, if 2t is small enough, then
two, and only two, types of positions of the triple junction can possibly be
minimizing; which one in fact minimizes depends on the values of the l 's
(specifically, the sign of lv(3&2 - 2)&ls(3 - 2&4)�2). The positions are:

(1) move the triple point to position (x, y) with x�& y�0, and
move all three initial segments so that they meet at this point (see
Fig. 2(a)), or

Fig. 1. The complete set of force-balanced crystalline triple junctions is shown, when the
Wulff shape for each of the three interfaces is the same regular octagon.
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File: 822J 236210 . By:XX . Date:09:06:99 . Time:13:09 LOP8M. V8.B. Page 01:01
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Fig. 2. The dotted lines in (a) and (b) indicate the types of configurations that might
possibly be minimizing, given the solid-line configuration as the initial condition. Configura-
tion (c) cannot be minimizing, as can be seen by considering configuration (d), which has the
same surface free energy and a non-force-balanced triple junction.

(2) move the triple point to position (x, y) with x and y both greater
than or equal to zero, move the vertical and sloped segments so that they
meet at this point, add a small segment of slope 1 from the triple point
down to the x axis, and leaving the horizontal segment at height zero,
extend or shorten it to meet that small segment; finally, adjust the segments
at the final endpoints and their adjacent segments to maintain connectivity
(see Fig. 2(b)).

Proof. There are six regions of the plane defined by the lines contain-
ing the three segments. The triple junction could be inside the closure of
any of those six regions. Consider placing the triple junction (x, y) in one
of the six, subject to having each |(x, y) } ni |�24i 2t�li . Once the position
of the triple junction is given, each of the three interfaces which minimizes
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F is easily determined; it will be a straight line segment to the adjacent
segment if the triple junction is on the same side of segment i as the
adjacent segment, but will be a short segment down to the original line of
Ti if the triple point is on the opposite side from the adjacent segment
(since no surface energy change is made by putting it anywhere except at
Ti , and there is a cost in putting it elsewhere due to the z2

i l i term). Now,
again with (x, y) fixed determine whether the configuration formed by the
three independently minimizing interfaces at (x, y) is force-balanced; if it is
not, then the whole cannot be minimizing. Finally, the constraint |(x, y) }
ni |�24i 2t�li is in fact not a constraint, since moving the triple junction
farther than that cannot decrease energy: no edge will be computed to
move further than 4i 2t�li . One runs through the six possibilities and sees
that only two allow force-balance. See Fig. 1(c-d) for an example of a
non-force-balanced choice of (x, y).

In case 2, (and writing Ls=ls�2), is

F=&(- 2&1) x&(3&2 - 2) y+(1�(22t))(x2lv+(x+ y)2 Ls)

and it is minimized by

x�2t=((3 - 2&4) Ls)�(lvLs)

y�2t=(lv(3&2 - 2)&Ls(3 - 2&4))�(lvLs)

For this configuration, y is required to be nonnegative; if it is computed to
be negative, then case 2 cannot occur.

In case 1, the net energy change is

&(- 2&1) x&(3&2 - 2) y+(1�(22t))(x2lv+ y2lh+(x+ y)2 Ls)

and it is minimized by

x�2t=((- 2&1) lh+(3 - 2&4) Ls)�d

y�2t=(lv(3&2 - 2)&Ls(3 - 2&4))�d

where d=lv lh+lvLs+lh Ls , Now we require x� & y>0. The transition
from case 1 to case 2 is continuous: the values of x are equal when y=0,
x>& y always, and either one condition is true or the other is (with both
being true only when y=0).

The system for doing the motion of the curves is now to move each
curve by the appropriate zi , and then to repeat the minimization. If no
segment was added the first time, then the configuration is the same as it
was, except for the lengths being slightly different; when the energy is mini-
mized again starting from the new polycrystal configuration, it will likely
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Fig. 3. Here are the two types of configurations, shown in darker dashed lines, that could
be minimizing for the second time step, if the first time step produced the configuration
indicated by the lighly dashed lines.

(but not necessarily) again result in not adding a segment. But if a segment
was added, then one starts from the configuration of Fig. 2(b), where there
are now two possibilities a priori. In one case, a new segment is added, this
time of normal (0, 1), as in Fig. 3(a). In the other case, no new segment is
added but all three segments move which meet at the triple junction (one
of them being the small segment added at the previous time step), as in
Fig. 3(b).

In the latter case, the most likely scenario is that in successive time
steps, the three segments keep moving, with no new segments added. In the
former case, the new configuration after this second time step is the same
as the original configuration, and the most likely result of the third time-
step minimization process is to produce yet another small segment, of the
same direction as that introduced in the first time-step minimization. Thus
in this case, new segments of alternating direction are produced at each
time step. This results in an approximation to a varifold being created
along the path of the triple junction. The limit motion, as the time step 2t
goes down to zero, is actually a varifold.

3c. The General Surface-Integral Formula, for Nonzero 8

We rewrite the ``energy difference'' Fc defined above, and derive a
condition which we call COND, depending only on the surface energy
functions [8:;] for the three interfaces and the variables [gi] defined
below. If COND does not hold, then this surface-integral formulation gives
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a unique motion for time step 2t for the triple junction. Otherwise, the
volume formulation of Section 4 must be used. COND is a condition on
the three 8 which holds with probability zero for three arbitrary Wulff
shapes for the interfaces; in particular, it never holds when all three Wulff
shapes are the same regular octagon. Nevertheless, it does hold when all
the 8 are identically zero, and also in the particular case when all three
Wulff shapes are the same regular hexagon, with choices of the variables
[gi] appropriate to the segments.

Without loss of generality, assume that a force-balanced triple junction
is initially at the origin, and that segments T1 , T2 , T3 have their initial
points at that triple junction, but none of their terminal endpoints are at
triple points.2 Denote ni=(ci , si) and cos % i+=ni } n i+ , where ni+ is the
normal of the segment just beyond segment i in its interface.

In the following, (x, y) are the coordinates of the new triple junction
position, zi is the distance that segment i is to be moved in the direction
of its oriented normal, and each gi=0, &1 or +1. Setting a particular
gi=0 corresponds to adding no segment to the interface of Si at the triple
point, whereas setting gi=\1 corresponds to adding a new small segment
between the triple point (x, y) and the ith edge, so that gi becomes $i& for
Si . As for all admissible curves, there are two possible orientations (from
the appropriate Wulff shape) for such a new segment on the interface of Si ,
one making a regular (convex) intersection with Si and one making an
inverse (concave) intersection. In the first case, set gi=1 and nia the normal
preceding ni in the appropriate Wulff shape, and in the second set gi=&1
and nia the normal following n i . (Again, ``preceding'' and ``following'' are
determined by orienting the boundary of the Wulff shape as the boundary
of the positively oriented Wulff shape, by the right hand rule.) One imposes
the requirements that zi=xci+ ysi for any i such that gi=0, and
gi (zi&(xci+ ys i))>0 for each i with gi{0. Let 8i be the surface energy
per unit length of segment Ti , and similarly for 8ia and 8i+ . If gi{0,
define fi&=(8ia&8 i n i } nia)�(- 1&(ni } nia)2).

The formula for Fc (assuming the triple junction is force-balanced)
becomes

Fc([z i], [Ti], [gi], 2t)=Ss+Bs+Is
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where

Ss= :
3

i=1

(zi $i+ fi++8i (xs i& yc i)+ gi (zi&(ci x+si y)) fi& )

+rest of interfaces

Bs=& :
3

i=1

zi Ci li+rest

Is=
1

22t
:
3

i=1

li z2
i �M i+rest

and we require, as stated previously, that zi=xci+ ys i for any i such that
gi=0, and gi (zi&(xci+ ys i))>0 for each i with gi{0.

Definition 3.1. Assume the triple junction is force-balanced. In the
notation above, condition COND holds if for one or more values of
k=1, 2, 3 and for some nonzero choices of [gi]i{k ,

8k=sk :
i{k

gi c i ( fi& &8i si)&ck :
i{k

(gi si fi&+8 i c i)

or if ni=&nj for some 1�i< j�3. In particular, COND holds whenever
all the 8i are zero. Observe that COND holds at the extremes of force
balance.

Theorem 3.2. If COND does not hold, then unique minimizers
exist, and they have at most one gi nonzero. The minimization of Fc at suc-
cessive time steps is the same as that described in [T1] for triple junction
motion.

Proof. In [T1], precisely the same variational scheme is described,
choosing among the various possibilities for setting one gi nonzero, but
without the explicit formulas given below for computing x and y and
whether any gi is nonzero.

Abbreviating

a11= :
3

i=1

(1& g2
i ) c2

i

li

Mi
, a12=a21= :

3

i=1

(1& g2
i ) si ci

li

M i

a22= :
3

i=1

(1& g2
i ) s2

i

li

Mi

a= :
3

i=1

((1& g2
i ) ci (C i l i&$i+ fi+)+ gi ci f i&&8i si)

b= :
3

i=1

((1& g2
i ) si (C i l i&$i+ fi+ )+ gi si f i& +8i ci)
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we compute that (�Fc ��x)=(1�2t)(a11 x+a12y)&a and (�Fc��y)=(1�2t)
(a21x+a22 y)&b. Thus any critical point with this choice of [gi] will have

zi={2tMi \Ci&
($i++ gi) 4i

2l i + if gi{0

xci+ ysi if gi=0

where x and y satisfy

a11 x+a12 y=a 2t, a21x+a22 y=b 2t

Let d=a11 a22&a2
12 . Observe that d can be rewritten as � (l i l j �Mi Mj)

(ci sj&cj si)
2 where the sum is over all i> j such that gi and gj are zero. In

particular, d>0 if at most one of the gi is nonzero (since COND not
holding ensures that nj{nk) and d=0 if two or more gi are nonzero.

Suppose two of the gi are nonzero and the third (say g3) is zero. In
this case, d=0; the equations for x and y are consistent if and only if
as3=bc3 . Since the terms involving Ci li cancel, this statement reduces
precisely to condition COND and thereby violates a hypothesis of the
theorem.

Suppose all three gi are nonzero. Then there is an interior critical
point in the open triangle of possible values of x and y determined by the
signs of the gi only if a=b=0. But then in fact COND holds, a contradiction
again.

Suppose one gi is non-zero and the rest zero. Then d>0 and there is
a unique solution for x and y by simple linear algebra; Provided it satisfies
the constraint gi (zi&(xci+ ys i))>0, Fc has a local minimum (since
a11>0) at x, y. Since all gi=0 is an endpoint of such configurations, the
existence of any local minimum with a gi{0 implies that the configuration
with all gi=0 cannot also be a minimum. On the other hand, if none of
the constraints holds for any gi nonzero, then the unique minimum must
be at the (x, y) determined by setting all gi=0.

We now show that there can be at most one of these local minima
with a gi nonzero, and therefore that if it exists, it is the unique global
minimizer. A given position (x, y) can be at a minimizer of Fc only
if for each i, gi=0 if 0�$i+(Ci 2t&1�Mi (x, y) } ni)�(4i �li), gi=&$i+ if
0>$i+(Ci 2t&1�Mi (x, y) } ni) and gi=$i+ if $i+(Ci 2t&1�Mi (x, y) } ni)
>(4i 2t�l i). If there are two positions (x", y") and (x$, y$) satisfying the
inequalities above, one with, say, g1{0 and g2=0= g3 , and the other with
g2{0 and g1=0= g3 , then there is a one-parameter family of (x, y) also
satisfying the inequalities which interpolates between these two configura-
tions and which has both g1{0 and g2{0. But since COND does not

1235A Variational Approach to Crystalline Triple-Junction Motion



hold, the minimum of Fc occurs uniquely at just one of the endpoints,
contradicting the possibility of there being local minima at each end.

One sees that the condition cannot hold for both gi=1 and gi=&1
for the same i, since both holding would imply that with f * the value of
fi& corresponding to gi=&1 and f ** the value of f i& corresponding to
gi=1, f *+ f * V <0. But in fact f *+ f **=41>0, so this is a contrad-
iction. (The computation can be done most easily by assuming, without
loss of generality, that i=1, ni=(0, 1), and $i+=1, and then solving for
(x, y) in each case. Under these-assumptions, one in fact computes that
f *+ f **<&(41 2t�l1)((d�a11)<0.)

Therefore the constraint can hold only for at most one i and one
choice of a gi .

Comment 3.3. The minimization of Fc , when COND does not
hold, under this positive-8 assumption, implies force-balance. Therefore
one can determine from the initial triple junction normals (before actually
computing any x, y, zi) just which gi need to be considered. However, for
computer calculations it is probably better just to search for the minimum
among all seven possibilities and check that the resulting x, y, [zi] satisfy
the constraints (and that COND does not hold).

Theorem 3.4. If COND does not hold and if the bulk driving forces
are written as =C:; , then the limiting motion obtained by minimizing Fc as
= approaches zero is the same as that with = equal to zero.

Proof. Determine which gi , if any, should be nonzero when ==0.
Then the distance the segments move varies continuously with =, and the
criterion that that gi should be nonzero (or that no gi should be nonzero)
remains true for small =.

4. THE VARIATIONAL APPROACH USING THE VOLUME
FORMULATION EC AS THE ENERGY

The family of variations we will consider consist of interfaces derived
from the original interfaces by moving their segments parallel to themselves
and by adding extra segments at triple junctions; maintaining continuity of
the interfaces by extending or truncating segments as necessary. The varia-
tional problems at each triple junction are independent of those at the
other triple junctions provided there is no segment with triple junctions at
both ends; therefore we will consider only the situation around one
particular triple junction. (The extension to the case of segments with triple
junctions at both ends should be obvious.) We will assume the triple point
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is initially at the origin, with each interface oriented outward from that
triple junction (i.e., so that the triple junction is the initial point of each
interface). Again, we do not consider here the case where any triple junc-
tions come together during the time step of the minimization, nor where
there are any other topological changes.

Thus we assume we have segments Ti , i=1, 2, 3 with initial endpoints
at the origin. We do not require that the normals ni be normals of their
appropriate Wulff shapes (or mobility shapes WM).

The variables in this volume-integral formulation are (x, y), [zi] i=1, 2, 3 ,
[ni] i=1, 2, 3 , [zi1 ,..., z ini

]i=1, 2, 3 , as well as [gi] i=1, 2, 3 and ne (a possible
special orientation for an added segment). For each i=1, 2, 3, we move Ti

a distance zi in its normal direction to create a new long segment S i ,
extending or contracting it and its neighbor at its terminal end to maintain
connectedness, and at the initial end we add segments Sij , j=1,..., ni , with
normals nij and at distances z ij from the origin. Various constraints on
these variables will be described. In particular, all segments must be such
that each interface forms a continuous embedded polygonal curve, and
each pair of distinct interfaces intersects only at (x, y).

Number the added segments sequentially backward so that Si1 is
adjacent to Si and Sini

has (x, y) as initial endpoint. Let nij be the normal
of S ij for i=1, 2, 3 and j=1,..., ni . For ease of notation, let n i0=n i ,
zi0=zi , and let (xini

, yini
)=(x, y). Define (xij , yij) to be the intersection

point satisfying the equations nij+1 } (x ij , y ij)=zij+1 , nij } (x ij , yij)=zij for
j=0,..., ni&1. Require zini

=nini
} (x, y). One of the normals n ini

, i=1, 2, 3
might be the variable ne . Apart from that one possible exception, the
normal directions nini

,..., ni0 are required to be exactly the normals of WMi

in counterclockwise order if gi=1, and in clockwise order if gi=&1. If ni

is not a normal of WMi
, then ni must be the normal of a supporting plane

of WMi
at the corner for which a plane with normal ni1 is also a support

plane.
Define three long thin trapezoids Ri and three sequences of triangles

2i1 ,..., 2ini
as follows. The trapezoids Ri have have Ti and Si as their

parallel sides; the vertices at one end are (0, 0) and (xi0 , y i0), and the
vertices at the other end are the original intersection point of segments Si

and Si+ and the intersection of Ti with the extension or truncation of S i+ .
For j=1,..., ni , 2ij has vertices (xij&1 , y ij&1), (0, 0), and (xij , yij), with that
order specifying the orientation of the triangle. The triangles and�or
trapezoids of one interface may overlap those of another.

Definition 4.1. We define the energy change Ec to consist of three
parts,

Ec=Sv+Bv+Iv

1237A Variational Approach to Crystalline Triple-Junction Motion



where Sv is the total surface energy of the new configuration minus that of
the old,

Bv=&:
i

Ci \Sign(zi) Area(Ri)+ :
j=1,..., ni

Sign(zij) Area(2ij)+
Iv=

1
2t

:
i \|x # Ri

|x } ni |
M i (n i)

dA+ :
ni

j=1
|

x # 2ij

|x } nij |
M i (n ij)

dA+
except that if nini

is ne then the integrand over 2ini
should be the more

precise M i*(x) (which will turn out to be ( |x } nini
| )�(Mi (n ini

)) for the
minimizer).

Ec should be minimized over all choices of x, y, zi , gi , ni , z i1 ,..., zini
,

and ne . In the case that there are only two phases, this is a reasonable
crystalline analog to the approach of [ATW], as extended by Yip [Y], in
the sense that [AT] proved that the motion of [T1] is the same as that
of [ATW]. In the polycrystalline case, this formulation explicitly accounts
for the effects of changing phase twice, via overlap of trapezoids and tri-
angles. For example, x may initially be in K# but change to be in K; and
then K: in the course of time 2t.

Theorem 4.2. Minimizers for Ec exist.

Proof. There is at least one configuration with a set of distances
satisfying all the hypotheses, including that each pair of distinct interfaces
intersects only at (x, y), namely that of a construction of a ``consistent
motion'' as in [T2]. (The fact that the Ci arise from differences in bulk free
energy densities B: guarantees that not all Ci have the same sign unless all
are zero, and therefore that the only-one-intersection condition can be
enforced.) Because each WM:;

is a polygon, there are a finite number of
different configurations to consider (each use of an extra normal ne being
considered to be a different configuration, but with different values of ne

considered to be the same configuration). The values of Ec become infinite
as any of the variable distances become unbounded, and the open
constraints on the distances correspond to transitions to other allowable
configurations, with a continuous change in Ec . Therefore minimizers exist.

Theorem 4.3. Minimizers of Ec need not be unique, at least if all 8
are identically zero.

Proof. A simple crystalline example has for each interface 8 identi-
cally zero and WM equal to the square [(x, y) : |x|�1, | y|�1], C1=1=
&C2 , C3=0, and n1=(0, 1), n2=(&1, 0), and n3=(&1, 1)�- 2. The
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origin is the initial point of each of the three segments. Then the new triple
junction position can be any point (x, y) with |x|�2t, y=2t or | y|�2t,
x=2t. All have exactly the same value of Ec . This situation was previously
observed in [T2].

There are also situations where several configurations satisfy the con-
struction of [T2], and all are local minimizers of Ec , but only one is a
global minimizer. One such example has everything as above, except that
WM2

is that square rotated by 45% and n2=(&1�- 2, &1�- 2). There are
now three different points at which the triple junction could be placed,
satisfying the construction. Two of these have the same value for Ec , but
the symmetric one in the middle has a slightly higher value, as somewhat
less matter gets converted to one of the preferred phases. The absolute min-
imum in this example in fact splits off two crystals: all three intersection
points become triple junctions, and the origin becomes a point where four
crystals meet, alternating between two phases. A more extreme version of
the same phenomenon occurs if n2=(&1, 1)�- 2 (and n3 is some convex
combination of n1 and n2). Then there are five different possible positions
for the triple point, three of them with one value for Ec and two with a
slightly higher value, and the smallest value for Ec being obtainable by
having all five be triple junctions, thereby splitting off four new crystals, so
that six crystals meet at the origin.

Proposition 4.4. (1) If the surface energies are nonzero and the
initial configuration is force-balanced, then at most one segment needs to
be added to each interface at any time step.

(2) If additionally COND does not hold, then at most one interface
needs to have a segment added at any minimization step.

(3) Under the assumptions of (1) and (2), in time intervals where no
further singularities develop in solving the limiting system of ordinary
differential equations determined by the minimizing Fc , the motion derived
from doing successive minimizations of Ec over time step 2t, and then
taking the limit as 2t goes to zero, is the same as obtaining by the limit
of motions minimizing Fc as detailed in Section 3c.

Proof. It is straightforward to compute the derivatives of Ec with
respect to x, y, zi , and any zij , j=1,..., ni&1. For each segment with no
endpoint at the new position of the triple junction, the Euler-Lagrange
equation is (up to order (2t)2) that z=M 2t(C&($+ f++$& f&)�l),
where l is the length of the moved segment rather than its initial length.
Therefore, as in the surface integral formulation, there can be at most one
non-zero gi , and force-balance of the original plus force-balance at the
minimum implies that at most one segment has been added on that inter-
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face. The equations for the zi with gi=0 are, except for terms of order
(2t)2, the same as they were in the minimization of the surface-integral
formulation. When a minimizer for Ec uses an added segment S with
normal ne , the surface formulation Fc produces segments of alternating
direction approximating S, with the position of the triple junction after two
time steps approximating that from obtained by two time steps of minimizing
Fc to within (2t)2.

Theorem 4.5. With all 8 identically zero, a motion resulting from
minimizing Ec gives a ``consistent motion'' of [T2], one obtained by use of
characteristics.

Note. This theorem does not say anything about any limit as the 8
approach zero; for that situation, see the following theorem.

Proof. Assuming one is at a minimum of Ec , varying zij will not
change Ec to first order. This automatically implies that 0=&Ci lij+
(1�2t) zij l ij . Alternatively, one can set to zero the derivative of Ec with
respect to zij , for j between 1 and ni&1 inclusive. For example, in the case
where gi=1, observe

Bv=& :
3

i=1

Ci \zi \li+
$i+

2

z i+&zi n i } n i+

- 1&(ni } ni+)2
+

g i

2

zi1&zi n i } ni1

- 1&(ni } ni1)2+
+ :

ni&1

j=1

zij \gi

2

zij&1&zij nij&1 } nij

- 1&(n ij&1 } n ij)
2

+
gi

2
z ij+1&zij nij+1 } nij

- 1&(n ij+1 } n ij)
2 +

+zini \
gi

2

zini&1&zini
nini&1 } n ini

- 1&(nini&1 } n ini
)2

+
1

2
(xs ini

& ycini
)++

Thus one obtains

Ci \
zij&1&zij nij&1 } nij

- 1&(nij&1 } n ij)
2

+
zij+1&zij nij+1 } nij

- 1&(nij+1 } nij)
2 +

=
zij

Mi (nij) 2t \
zij&1(2�3+1�3(z ij&1 Mi (nij))�(zij Mi (nij&1)))&zij n ij&1 } n ij

- 1&(nij&1 } nij)
2

+
zil (2�3+1�3(z ij+1M i (nij))�(zij Mi (nij+1)))&zij n ij+1 } n ij

- 1&(nij+1 } nij)
2 +

The derivative with respect to zi is similar, except that there is an addi-
tional term li inside the big parentheses on each side of the equation; this
term is of order 1 whereas the other terms are of order 2t. Therefore, up
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to a correction of order 2t, zi �2t=Mi (ni) Ci for the long segments.
Observe that if zi �2t=Mi (n i) Ci we can obtain the solution to the system
of equations by setting zik �2t=Mi (n ik) Ci for each k, since then
zilM i (nik)�(zik Mi (nil))=1 for each pair k, l.

At the triple junction, the two interfaces which do not use ne determine
(x, y), if one uses zij as above. The variable thus becomes ne , which deter-
mines its z, together with gi and ni . The determination of the optimal ne

reduces to a single-interface problem having nothing to do with triple junc-
tions. One computes that the single tangent segment used in the tangent
construction of [T2] produces the value of ne that occurs in the minimizer
and satisfies M*(x)=x } ne �M(ne) for every x in 2ini

; also z=2tMi (ne) Ci .

Theorem 4.6. If one writes 8==80 and determines a motion as a
limit for time step 2t going to zero, and then takes a limit of these motions
as = goes down to zero, then the result need not be the same as any motion
obtained with ==0. In fact, the discontinuity as a function of = is explained
by the fact that for any =>0, min[- (1�2t) =�C3, k] is k for small enough
2t, whereas the minimum is always zero when ==0. Here C is a measure
of the constants Ci and k is a measure of the distance between the position
of the triple junction under the assumption that ==0, and the position of
the triple junction at force balance, given the same local boundary data as
for the ==0 case.

Proof. We assume the same initial surface as in the example of
Section 3, and the same regular octagon for all WM and W8 . We further
assume C1=0, C2=C, C3=&C. When ==0, the minimizer of Ec (and
thus the motion of [T2]) adds segments of normal n2t=(1�- 2)(1, &1),
n3t=(1�- 2)(&1, 1) at distances z2t=C 2t, z3t=&C 2t, and moves
segments 2 and 3 the same distances, respectively. Now consider putting a
small ``tent'' further out along interface 1, adding another segment, this
time of normal n2=(1, 0) to interface 2 and one of normal n3=(0, 1) to
interface 3, at distances so that the triple point is now at (C 2t�- 2)
(1+d, &(1+d )). We minimize the volume-form of the energy and see
that it occurs at d=min[- 2&1, - = C&3�2(2t)&1]. Thus when ==0, the
minimum is at d=0, whereas for any positive =, once 2t is small enough
the minimum is at d=- 2&1 (the corner is fully pushed out and the two
segments of normal n2 are merged, as are those of normal n3 ; this is the
minimizer for Fc).

Although it is a specific computation, this example embodies the
central issue and explains the discontinuity. It is relatively easy to work out
other particular cases of the limit motions and compare them to the ==0
motion.
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5. CONJECTURES

Conjecture 5.1. A minimizer for Ec is conjectured to be a minimizer
for E, at least to within o(2t).

Conjecture 5.2. For each positive integer n, obtain an approximate
motion by setting 2t=2&n and doing a sequence of minimizations of E

[resp., Ec], using a minimizer at time m 2t as the ``old'' polycrystal to
determine the ``new'' polycrystal at time (m+1) 2t. Then for some sub-
sequence nk , we conjecture that there is a Ho� lder estimate relating the
approximate motions derived from minimizing E [resp., E], and therefore
a limit motion as nk goes to infinity. Furthermore, the motions derived
from minimizing E are conjectured to be the same as those from minimizing
Ec , just as crystalline motion of curves as described in [T1] gave the same
motion as that of [ATW], as proved in [AT].

Conjecture 5.3. A limit motion derived from minimizing E as =
goes to zero (which by Theorem 4.6 is not necessarily the same as with
==0) is conjectured to be the one which Reitich and Soner [RS] get as
their viscosity solution when the surface energy is identically zero.

Possible outline of a proof: One might take the examples in their
paper, make crystalline approximations to them, use appropriate energies
8, and show that the limit as = goes to zero is the same as their motion.
The ==0 motion is clearly different from theirs, by the example of
Theorem 4.6.

Conjecture 5.4. The following is a possible different version of the
term Iv in E for general dimensions d.

If we focus on partitioning up Rd as in [C] rather than on sets such
as R:; as in Section 4, then we need to allow several different regions to
sweep over a given point within time 2t. We might set

Iv=
1
2t

:
j

:
:�;

|
x # (K:tL:) & L;

:
i=1, J

{:j(i&1) :j(i )
(x) dV

where for any (:, ;), {:;(x)=infy # 4: & 4;
M*:;(x&y) and the sum is over

the longest increasing sequence j(0)=:,..., j(J )=; such that for any
integer 0<i<J,

1
C:j(i&1) :j(i+1)

{:j(i&1) :j(i+1)
(x)>

1
C:j(i&1):j(i )

{:j(i&1) :j(i )
(x)>

1
C:j(i ):j(i+1)

{:j(i ):j(i+1)
(x)
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The author knows of no case where J>2 for triple junctions. The terms in
the inequality represent the time required for an interface to advance purely
due to bulk driving forces. The sequence of j's is increasing because we
assumed B:<B; if :<;. If no sequence satisfies that condition, in
particular if the C's are all zero, then J=1. Observe that points that
change from one crystal to another twice within the time step 2t make a
contribution both times to Iv , as they should. It is not known whether this
approach has any particular virtues.
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